SH-III/Mathematics/303C-7(T)/19

B.Sc. Semester III (Honours) Examination, 2018-19 MATHEMATICS

Course ID: 32113 Course Code: SHMTH-303C-7(T)

Course Title: Numerical Models

Time: 1 Hour 15 Minutes Full Marks: 25

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions:

 $1 \times 5 = 5$

- (a) Find the percentage error in approximate representation of $\frac{7}{6}$ by 1·16.
- (b) Round off the numbers 40·3586 and 0·0056812 to four significant digits.
- (c) With usual notations, prove that $\Delta \nabla \equiv \Delta \nabla$.
- (d) Find the function f(x) whose first difference is e^x .
- (e) State the condition of convergence of the fixed point iteration method for finding a real root of the equation f(x) = 0.
- (f) Using Euler's method, find y(0.05) given that $\frac{dy}{dx} = 1 + y^2$, y(0) = 0 and h = 0.05.
- (g) What is the geometrical significance of Trapezoidal rule for numerical integration?
- (h) State Newton Gregory formula for forward interpolation.

2. Answer *any two* questions:

 $5 \times 2 = 10$

(a) What is interpolation? Using suitable interpolation formula, compute f(1.4) and f(3.8). from the following data:

х	0	1	2	3	4
f(x)	1.0	1.5	2.2	3.1	4.2

5

- (b) Explain the method of iteration for numerical solution of an equation of the form $x = \phi(x)$ and obtain the condition of convergence of the process.
- (c) Establish the Newton-Cotes formula (closed type) in the form $I = (b-a)\sum_{i=0}^{n} H_i y_i$ for i=0

the integral $I = \int_a^b f(x) dx$, where H_i 's are the Cote's coefficients and $y_i = f(x_i)$. Hence obtain the Trapezoidal formula for the given integral I.

4+1=5

10435 Please Turn Over

SH-III/Mathematics/303C-7(T)/19

(d) Given $\frac{dy}{dx} = x^3 + y$, y(0) = 1, compute y(0.02), by Euler's method correct upto four decimal places taking step length h = 0.01.

(2)

3. Answer *any one* question:

 $10 \times 1 = 10$

- (a) (i) The 'rate of convergence of an iterative formula is p'—What do you mean by this statement?
 - (ii) Show that the Newton-Raphson method has quadratic rate of convergence.
 - (iii) Determine u(t) at t = 0.2, 0.4 using the classical fourth order Runge–Kutta method, given that u' = t/u, u(0) = 1.
- (b) (i) Describe Gauss-Seidal iterative method for the solution of a system of n linear equations in n unknowns. State the condition of convergence of this method. 4+1=5
 - (ii) Describe the power method for determining the largest eigen value in magnitude of a matrix A. (4+1)+5=10